公司地址:河南省郑州市傲世皇朝注册电子产品有限公司
电话:15232662500
传真:400-822-5988
邮箱:595588519@qq.com
集团网址:http://www.hnztbl.com/
卧龙娱乐主管-首选首页,仪器信息网单模蝶形封装激光器专题为您提供2025年最新单模蝶形封装激光器价格报价、厂家品牌的相关信息, 包括单模蝶形封装激光器参数、型号等,不管是国产,还是进口品牌的单模蝶形封装激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单模蝶形封装激光器相关的耗材配件、试剂标物,还有单模蝶形封装激光器相关的最新资讯、资料,以及单模蝶形封装激光器相关的解决方案。
分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
2019年5月10-12号,由吉林大学、中国科学院长春光学精密机械与物理研究所联合举办的第三届全国激光光谱技术学术论坛在吉林省长春市圆满落幕。滨松中国作为此次研讨会的首家赞助商,在会上隆重展出了激光器新产品——外腔调谐量子级联激光器L14890-09(External-Cavity Quantum Cascade Laser, EC-QCL)和低热功耗的蝶形量子级联激光器。 外腔调谐量子级联激光器L14890-09是一款利用腔外光栅结构、连续波长调谐、频扫式工作的脉冲量子级联激光器,波长调谐范围为7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。 在中红外光谱应用上,相比较于传统的FT-IR方法,该产品充分利用激光的定向能和宽频扫特性,可实现中红外光谱的远程、非接触式、高通量测量。 现已应用于中红外光谱测量、树脂塑料分选、无创血糖测量、中红外高光谱成像技术以及气体分析等领域。值得一提的是,该产品在2018年被日本文部科学省纳米技术平台事业部授予“最佳成果奖”。Polystyrene film Measurement resultData provided byMr. Hiromitsu Furukawa, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology新款蝶形量子级联激光器,采用Tall-Butterfly 封装,相比较于传统的HHL封装,该款产品QCL芯片经过重新设计,在阈值电流、最大电流、芯片功耗以及总功耗方面均有大幅度优化。且更加紧凑,重量只有16g,非常适合于集成到气体分析设备内。该款产品仍然继承了滨松光子原HHL封装QCL的优点:CW功率保证不低于15mW,芯片工作温度10~65摄氏度,甚至某些高温芯片无需外部风冷,完全可以满足日常环境要求。 在探测器方面,滨松中国展出了满足ROHS标准的无毒害InAsSb红外探测,探测范围为1~14um。同时也展出了满足工业监测标准要求的CCD/CMoS阵列光谱仪,主要应用于紫外差分吸收光谱(DOAS)和拉曼光谱分析技术。滨松QCL产品在气体分析的应用中,具有实时检测、快速响应、高精度和高分辨率的优点。搭配相应的探测器,则可准确高效地实现气体的分析测量。
p strong 一、 拉曼光谱仪设备的市场展望 /strong /p p 作为在分子光谱领域中发展最快的设备,拉曼光谱仪正在成为当前仪器行业的焦点之一。 在早期阶段,拉曼光谱分析设备一直是高端实验室用仪器的代表 然而随着激光器、CCD检测器等技术的进步,便携和手持式的设备成为了拉曼分析仪器一个新的发展趋势——设备体积越来越小,操作越来越简单,应用也越来越广泛。最近两年,由于安防、海关等领域现场快检的需求增加,国内的便携/手持式的拉曼设备的市场迎来了迅速的增长。我们相信在未来的数年内,随着技术方案的成熟、设备成本的进一步降低以及国家政策法规的完善,公安部门、食品安全、药品检测等几大领域的应用也会逐渐成熟 届时,便携/手持式拉曼光谱仪的应用会出现真正的突破,出现爆炸式的市场增长。 /p p strong 二、 便携式拉曼光谱仪关键部件概述 /strong /p p 一台完整的拉曼光谱仪通常由激光器(光源)、样品外光路、色散系统、信号接收系统和信息处理系统几大部分组成。 strong 相对于高端的实验室系统,便携式拉曼设备的内部部件更简单且模块化程度更高,其关键的零部件包括光源模块、光谱仪模块以及拉曼探头三样。仅针对便携式拉曼设备的应用来说,以上几个关键部件国内外厂商的技术水平相差已经不大,国产产品基本能达到国外同类优秀产品的水平,并且具有更高的性价比 /strong 。在拉曼光谱的核心器件——激光光源领域,近年来国内已经出现了一些优秀的供应商,深圳市大族锐波传感科技有限公司便是其中之一。 /p p strong 三、 大族锐波拉曼激光光源产品介绍 /strong /p p 深圳市大族锐波传感科技有限公司是一家光电传感领域的高新技术企业,致力于提供高端光电传感产品与系统。公司由上市企业大族激光科技产业集团股份有限公司和海归技术团队于2015年5月共同发起设立,并引入了多家机构投资者注资。公司位于深圳市南山区高新技术产业园,目前注册资本人民币1亿元。大族锐波在传感用高性能半导体激光器领域具有领先的技术与丰富的经验。公司的技术团队曾最早在国内成功开发出应用于便携式拉曼光谱设备的785nm窄线宽半导体激光器,突破国外垄断,且产品的性能指标不逊色于国际同行的同类高端产品。针对当前拉曼光谱分析仪器领域的应用,大族锐波传感推出了以下数款半导体激光器光源产品: /p p style= TEXT-ALIGN: center img title= 785nm窄线宽激光器.png style= HEIGHT: 291px WIDTH: 300px border= 0 hspace= 0 src= 窄线宽激光器 /strong /p p span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 785nm窄线宽激光器是一款基于外腔设计的蝶形封装激光器。由于独特的腔体设计,产品具有非常好的波长温度稳定性、窄谱线线宽、高边模抑制比等特点。该激光器的标准封装是14引脚的蝶形管壳,由Bragg体光栅来实现中心波长的稳定和低温依赖性。其它封装形式也可以根据客户需求提供。该产品非常适用于拉曼光谱、传感、医疗以及其他测量等领域的应用。 /span /p p span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 除了具有拉曼光谱分析所要求的窄线nm)输出外,产品可根据客户的需求提供不同规格的稳定功率输出:最高输出功率可达600mW以上 低功耗的型号则具有非常低的阈值电流 (~200mA的阈值电流,指标领先于国外同类器件),尤其适用于便携或手持式拉曼分析仪的应用。 /span /p p style= TEXT-ALIGN: center img title= 785nm窄线宽激光器模块.png style= HEIGHT: 263px WIDTH: 300px border= 0 hspace= 0 src= 窄线宽激光器模块 /strong /p p span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 激光器模块内置大族锐波生产的窄线宽激光器,通过专有的电路驱动设计实现稳定快速的激光驱动。该款激光模块体积小,固件升级灵活,具有风冷或无风冷选择、标准USB接口和TTL接口。该产品非常适用于拉曼光谱、传感、医疗以及其他测量等领域的应用。可根据客户的需求提供定制服务,并提供相应的技术支持。 /span /p p style= TEXT-ALIGN: center img title= 785nm单模激光器.png style= HEIGHT: 261px WIDTH: 300px border= 0 hspace= 0 src= 单模激光器 /strong /p p span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 产品基于外腔设计,由Bragg体反射体光栅形成的外腔反馈保证了稳定的中心波长和低温依赖性。由于独特的腔体设计,该款激光器能输出高质量的单模光束,并具有非常窄的谱线线宽和高边模抑制比。高质量的单模高斯光束可以有自由空间窗口输出和单模光纤耦合输出两种输出模式。该产品适用于如拉曼显微光谱分析等领域的应用。 /span /p p span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 目前我司的数款拉曼光源激光器件及模块产品均获得了客户的认可与好评,主推的785nm窄线宽激光器模块已经被国内领先的拉曼设备生产商采用,应用在其便携式设备之中。 /span /p p strong 四、 大族锐波未来发展规划及对于拉曼仪器行业的期望 /strong /p p 在拉曼光谱之外的其他领域,大族锐波也陆续推出了多款高性能的传感用激光器产品,如1550nm单频激光器,1064nm单模激光器等。依托海外高层次技术团队拥有的核心技术和大族激光在传感领域的发展战略布局,大族锐波希望以光电传感的关键技术为切入点,研发、设计、生产和销售应用于光学传感、环境监测、工业检测等领域的集成光电传感器产品。公司将在激光器器件及模块产品的基础上不断投入和发展,目标是经过三到五年时间的成长,在国内或国外资本市场上市,进一步发展成为国际光电传感技术的领导企业之一。 /p p 现场快检是仪器行业的一个前景巨大且发展迅速的方向,我们十分看好便携式和手持式拉曼光谱设备在各个快检领域的应用。在该方向,国产的拉曼设备厂商已经开始奋起直追,产品性能和进口设备的差距将越来越小,并且性价比更具有优势。在未来,除了期待拉曼设备厂商在技术上不断进步、追赶达到国外产品的先进水平外,同时也希望针对行业应用的方案商能更好的配合终端用户需求,提供更加成熟的应用解决方案。我们期待能和拉曼领域的各个设备厂家和解决方案提供商进行深度细致的交流,获得该领域的前沿发展方向的信息,尤其是对激光光源产品的改进需求,以便于更加针对性地开发合适的产品,为国产拉曼行业的发展贡献一份力量。 /p p style= TEXT-ALIGN: right ( span style= FONT-FAMILY: 楷体,楷体_GB2312, SimKai 市场工程师 王睿 /span ) /p
日前,中科院长春光机所在国内首次研制出碱金属原子光学传感技术专用的795nm和894nm 垂直腔面发射激光器(VCSEL)。该器件采用完全自主的结构设计、材料生长和芯片工艺研制而成,芯片体积仅为0.05立方毫米(0.5mmx0.5mmx0.2mm)。器件高稳定单模态激光输出高于0.2毫瓦,工作电流低于1.5毫安,功耗低于3毫瓦,工作温度超过100℃,可作为核心光源用于芯片级原子钟、原子磁力计、原子陀螺仪等碱金属原子传感器。 基于原子光学技术的精密传感需要一些特定的波长(如795nm和894nm等)并且满足窄线宽、低功耗、可直接调制、单模和稳定偏振态的光源来激发碱金属原子。传统灯泵浦光源方案的传感器存在的体积大、功耗高、稳定性差等问题一直是困扰原子光学传感器小型化的主要难题。垂直腔面发射激光器(VCSEL)作为一种新型的半导体激光器,具有窄线宽、低功耗、高调制频率、小体积和容易集成等特征,因此基于VCSEL的相干布居俘获(CPT)方法使得原子光学器件的微型化和低功耗应用成为可能。 目前,国外只有个别实验室和公司具有制作该类原子光学传感器专用VCSEL的能力。中科院长春光机所大功率半导体激光组在十余年研究基础上成功制备出性能符合要求的VCSEL器件,为国内原子传感器的研制提供了必需的核心元器件并掌握了自主知识产权,目前正在与国内相关单位开展合作研究,促进芯片级原子传感器的产品开发。这些产品将应用于航天、国防以及民用领域,例如:精密计时技术、单兵卫星精确定位,长航时远距离惯性导航,高灵敏度水下金属磁场测量等。 795nm VCSEL 芯片(左)和TO46封装器件(右)
近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话。我们将竭诚为您服务!
【科学背景】光场的衍射限制基于光子动量的不确定性关系,制约了光场局部化的极限,尤其是在使用介质结构时更为显著。传统的等离子体技术虽然能够实现较小的模体积,但却不可避免地伴随着能量损耗和相干时间的限制,这限制了其在高效能计算和通信中的应用。为解决这一问题,近年来,北京大学的马仁敏团队提出将介质结构与纳米技术相结合的新思路。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔中,实现了光场的超越衍射限制的极端局部化。这一研究不仅发现了介质蝴蝶形纳米天线中的电场奇异性,源自动量的发散,还成功制备了具有单纳米间隙的高精度纳米结构。【科学亮点】1. 本研究首次在介质纳米激光器领域实现了对光场的亚波长限制局域化。通过将介质蝴蝶形纳米天线集成到扭曲格子纳米腔的中心,作者创造性地实现了超小尺度的模体积,迈向了极端光场局域化的新境界。2. 作者采用了刻蚀和原子层沉积的两步法制备所需的介质蝴蝶形纳米天线,精确控制了其顶端的纳米级间隙。3. 在实验中,作者发现介质蝴蝶形纳米天线顶端的电场奇异性源于动量的发散,导致高度集中的场。该结构在1纳米尺度上实现了异常小的特征尺寸,并实现了约0.0005 λ3的超小模体积。【科学图文】图1:奇异介质纳米激光器中的电场无限奇点。图2:具有原子尺度间隙尺寸纳米天线的奇异介质纳米激光器的制备。图3:单介质纳米激光器的激光特性。图4:奇异介质纳米激光器的模式特性。图5:非积分拓扑电荷与原子尺度定域光场。【科学结论】这项研究通过整合介质纳米结构和光子晶体的独特设计,突破了传统光学衍射限制,实现了光场在原子尺度上的极端局部化。传统上,光场的空间局部化受到材料介电常数的限制,难以将光场压缩至亚波长尺度。然而,本研究通过设计介质蝴蝶形纳米天线和扭曲格子纳米腔的协同结构,有效地利用了动量的发散机制,产生了在纳米尺度上高度集中的电场。这一发现不仅展示了介质纳米器件在光场控制方面的潜力,还为超精密测量、超分辨率成像和高效计算通信等应用提供了新的技术路径。本研究不仅拓展了光场压缩的实现途径,还挑战了人们对介质材料局部化能力的传统认知。通过实验验证介质蝴蝶形纳米天线的电场奇异性是由动量发散引发的,为进一步理解和优化介质纳米结构的设计提供了理论基础。原文详情:Ouyang, YH., Luan, HY., Zhao, ZW. et al. Singular dielectric nanolaser with atomic-scale field localization. Nature (2024).
近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线kW的近单模拉曼光纤激光输出。 近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。 该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。 该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。 千瓦级掺镱-拉曼集成的光纤放大器结构示意图 输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
据美国《每日科学》网站3月31日报道,澳大利亚因斯布鲁克大学研究小组最新实现的更高能量单原子激光,不但具有传统激光器的属性,还展示了单个原子相互作用的量子力学性质。 在传统型激光器中,光学性质活跃的物质被放置在两面镜子之间的一个空腔内,然后用电流或另一束激光将其激发。光学性质活跃的物质所发射出的光子被反射再次穿过物质,会激发更多光子的发射,最终产生激光。系统中单个电子或光子的量子涨落对整个激光器几乎没有影响。 单个原子激光器,其激光出自于单个原子。首先对于激光系统性能而言,其工作阈值条件具有非常重要的意义。因斯布鲁克大学的科学家瑞纳布拉特与皮特施密特领导的研究小组,展示了激光阈值高度完美化的最小可能:单个原子可在光学腔中单模交互。被“囚禁”在离子阱中的单一钙离子,因接受外部激光刺激而活跃,释放出一个光子。由两面镜子组成的高精度光学腔,能捕捉并聚集该光子,离子循环的每个周期都有一个光子被添加到腔洞系统中,使光线得以增强。 单原子激光器可促进人们了解单个原子与单个光子之间的相互作用,由单原子激光器产生的非经典光将实现对光子流量的精细控制,在光子信息工程中具有很大的应用前景。自1958年研制成功以来,激光就被冠以“最快的刀、最准的尺”之名。但现今的这项技术正在将此概念延伸到一个全新的领域。 该项成果发表于最新一期《自然物理学》杂志上.
从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。原文请查阅:hannels: AtomicPublished: May 15, 2018 符斌供稿
9月29日,兴证创新资本发布消息称,兴证资本旗下基金近日完成了对山东华光光电子股份有限公司(以下简称“华光光电”)的投资,投资细节未披露。华光光电成立于1999年,是国内规模较大的半导体激光外延材料生长、芯片制备及器件封装为核心产品的高新技术企业。作为国内较早引进生产型MOCVD设备进行半导体激光器研发和生产的高新技术企业,华光光电拥有国内规模较大的激光外延片、芯片、器件、模组及应用产品一条龙生产线,产品从毫瓦级到千瓦级,波长覆盖紫光波段到近红外波段,多项成果达到世界领先水平,是国际上极少数具有研发实力、并能量产高功率半导体激光器芯片及器件的公司之一。随着研发实力的不断提升,华光光电自2008年以来,先后获批山东省重点实验室、山东省工程实验室、山东省工程技术中心、山东省企业技术中心、山东省协同创新中心等一系列省级研发创新平台、国家级企业技术中心,并在今年8月份凭借在半导体激光器领域的领先技术、行业专业定位及发展潜力等优势,获批2022年度国家级专精特新“小巨人”企业。
在&ldquo 十二五&rdquo 863计划新材料领域&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目支持下,中国科学院上海光学精密机械研究所承担的&ldquo 千瓦级光纤材料及全光纤激光器&rdquo 课题取得重大进展,在近期通过了课题技术验收。 课题解决了低光子暗化掺镱光纤、高功率光纤光栅、高功率泵浦合束器的国产化制备技术,开发出双包层光纤、光纤光栅和泵浦合束器系列产品或样品,形成了一套拥有自主知识产权的高功率光纤材料与核心部件的制备工艺技术,所开发的掺镱光纤与核心部件应用在千瓦级光纤激光器产品中。 掌握了千瓦级全光纤激光器的整机集成及规模化生产的关键技术和相关工艺,实现了数百瓦到千瓦级单模全光纤激光器的批量化生产,打破了国外垄断。所开发的系列高功率全光纤激光器已在金属薄板切割、焊接等领域获得重要应用。 课题实施期间,成立了2家专业从事高功率光纤激光器研发生产的高科技公司,组建了专业化的生产示范线,实现了数百瓦到千瓦级光纤激光器的产业化。2012年,形成了小规模生产销售能力。 作为目前先进的工业加工用高功率激光器,单模千瓦级以上全光纤激光器我国还大量依赖进口。高功率全光纤激光器与智能机器手技术相结合,使得实现高功率激光加工(如焊接、切割、融覆、3D打印等)的柔性化和智能化成为可能,是目前国内外激光加工装备的重要发展趋势。作为制造业大国,我国对该类高效率全光纤激光器有较为广泛的应用需求,市场前景广阔。
记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。 飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。 在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。 该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。“未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
夏普于2012年12月25日宣布,开发出了世界光转换效率最高的红色半导体激光器,型号为“GH0641FA2C”,其光转换效率达到33%。该产品振荡波长为640nm,通过优化材料组合和构造,提高了转换效率,在单模振荡红色半导体激光器中实现了业界最高的转换效率。该激光器计划主要用于车载用平视显示器及小型投影仪等。 该产品的最大光输出功率为150mW,阈值电流为55mA(标准)。光输出功率为150mW时,工作电流为182mA(标准),工作电压为2.5V(标准)。峰值振荡波长为642nm。光束发散角度为水平方向9度、垂直方向17度。样品价格(含税)为5000日元,预定从2013年1月31日开始样品供货,2013年3月29日开始量产,计划每月量产1万台。
近日,睿创研究院及睿创光子团队在中红外带间级联激光器(Interband cascade laser,ICL)的研究取得重要进展,相关团队实现了高性能、室温连续工作、多个激射波长的带间级联激光器系列,结合分子束外延技术,在InAs衬底上生长带间级联激光器材料,制备的窄脊器件室温激射波长接近4.6μm和5.2μm。目前大部分带间级联激光器生长在GaSb衬底上,而睿创团队报道的带间级联激光器生长在InAs衬底上,波导包层由InAs/AlSb超晶格和高掺杂的InAs层构成。相比于常见的GaSb基带间级联激光器,InAs基带间激光器在较长波长处(例如长于4.5μm)具有更低的阈值电流密度。(a)4.6μm波长、2mm腔长、10μm脊宽的器件在20℃-64℃之间连续激射光谱;(b)同一器件在20℃-64℃之间的连续电流-电压-功率曲线μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为292A/cm²;2mm腔长和10μm脊宽的窄脊器件的连续工作温度可达64℃,室温输出功率为20mW;在相近波长处为目前报道的最高连续工作温度。对于5.2μm波长的带间级联激光器,宽脊器件室温脉冲阈值电流密度为306A/cm²;2mm腔长和10μm脊宽的窄脊器件最高连续工作温度为41℃,室温输出功率为10mW;其中阈值电流密度在类似波长为报道的最低水平。相关论文“High-temperature continuous-wave operation of InAs-based interband cascade laser”和“InAs-based interband cascade laser operating at 5.17 μm in continuous wave above room temperature”分别发表于Applied Physics Letters 和IEEE Photonics Technology Letters。(a)5.2μm波长、2mm腔长、10μm脊宽的器件在15℃-41℃之间连续激射光谱;(b)同一器件在15℃-41℃之间的连续电流-电压-功率曲线带间级联激光器是基于能带工程和量子力学产生激射,技术含量很高并且研制难点众多,是国家纳米和量子器件核心技术的重要体现,目前和量子级联激光器(Quantum cascade laser,QCL)并列为重要的中红外激光光源,在环境监测、工业控制、医疗诊断和自由空间通信等领域具有重要的应用价值和科学意义。带间级联激光器的原始概念由美国俄克拉荷马大学的杨瑞青教授(Rui Q. Yang)于1994年首次提出,目前基本上都采用近晶格匹配的InAs/GaSb/AlSb三五族材料体系来构造,有源区大多为InAs/GaInSb二类量子阱,其能力可覆盖从中红外到远红外的波长范围。带间级联激光器结合了传统半导体二级管激光器和量子级联激光器的优势,与同样能覆盖中红外波段的量子级联激光器相比,具有更低的阈值功耗密度和阈值电流密度,这种极低功耗的优势在一些需要便携和电池供电设备的应用中显得非常重要。目前全球带间级联激光器市场仍由国外企业占据主导地位,国内仍处于产业发展的初始阶段。本文报道的这两项工作标志着睿创光子在带间级联激光器的外延设计和器件制备等多个方面同时达到了较高的技术水平,成为掌握高性能带间级联激光器技术的企业。该工作也为后续单模可调谐的DFB带间级联激光器的研发和量产打下了坚实的基础。睿创光子(无锡)技术有限公司是烟台睿创微纳技术股份有限公司的控股子公司,聚焦III-V族光电子器件、硅基光电子器件等光子芯片技术研发与产业化。
中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in asemiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, ’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, 昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
p style= text-align: justify text-indent: 2em 等离子体激光器由于其本身的亚波长金属腔而经受着低输出功率和光束发散的困扰。 /p p style= text-align: justify text-indent: 2em strong 近日,里海大学(Lehigh University)的科研人员研制出一套方案,可以显著提高激光的发射效率和改善光束质量,研究人员称之为锁相的方案。通过该应用,可以实现目前为止最高高功率的太赫兹激光输出。他们研制出的激光可以产生迄今为止最高的发射效率,并且适用于任何单波长半导体激光量子级联激光器。 /strong /p p style= text-align: center strong img style= max-width: 100% max-height: 100% width: 470px height: 530px src= 截屏2020-07-01 下午5.15.13.png alt= 截屏2020-07-01 下午5.15.13.png width= 470 height= 530 / /strong /p p style= text-align: center text-indent: 0em strong 文章截图 /strong /p p style= text-align: justify text-indent: 2em 阵列的金属微腔穿过等离子体波而实现纵向地耦合,从而导致单个光谱模的发射和衍射局限在表面法线方向形成单瓣光束。研究人员将这一方案应用于太赫兹等离子体量子级联激光器(quantum-cascade lasers,QCLs)和测量峰值功率超过2 W的单模 3.3 THz QCL在窄单瓣光束时的发射,条件为运行温度为58K时的紧凑型斯特林制冷机。 /p p style= text-align: justify text-indent: 2em 新的等离子体激光器锁相方案,与以往在半导体激光器方面的大量文献中对锁相激光器的研究截然不同,该方法利用电磁辐射的行波作为等离子体光腔锁相的工具。同早期的工作相比较,研究人员展示了在功率上可以有一个数量级的增加和至少30倍高的平均功率强度的单模太赫兹QCLs存在。 /p p style= text-align: justify text-indent: 2em 该方法获得的太赫兹激光辐射效率是迄今为止任何单波长量子级联所能达到的最高水平,也是首次报道这种量子级联的辐射效率超过50%。这一高效率可以说超过了研究人员一开始的预期,这也是为什么他们研制的激光器的输出功率会显著的高出以前的激光器的原因。 /p p style= text-align: justify text-indent: 2em 这项工作的主要创新在于光学腔的设计,它在某种程度上独立于半导体材料的特性。研究人员认为,在利哈伊大学的利哈伊大学光子学和纳米电子学中心,新获得的电感耦合等离子体(ICP)刻蚀工具在推动这些激光器的性能边界方面发挥了关键作用。这一研究报道可以说是单波长太赫兹激光的范式转变,窄的光束将会得到发展和在将来继续发展,同时研究者认为在将来太赫兹的前途非常光明。 /p
“民用半导体激光器件我们已摆脱长期依赖进口的局面。现在,我们已经发明成功,工艺性能稳定,产品投入规模生产阶段。”1月10日,记者在山东浪潮华光公司采访,听着技术专家高兴地介绍着,看到那长长的流水线正“收获成熟的芯片”。如今,我们的企业真正拥有了世界顶尖的核心技术,产品价格大幅度下降,让“等面值人民币”买到“等面值美元”的产品不再是梦想。 民用激光显示技术能够完美地再现自然色彩,是继黑白显示、彩色显示、数字显示之后的第四代显示技术。目前,国际上激光显示技术已发展到产业化前期阶段,未来3至5年,将是全球激光显示技术产业化发展的关键时期。为加快推进光电技术研究,打破关键技术的“封锁”,我国把“新一代激光显示技术工程化开发”列为863计划重点项目,其中的“高可靠性、低成本半导体激光器材料与器件工程化开发”课题让山东浪潮华光光电子有限公司所承担。 浪潮华光是国内唯一一家拥有从激光器材料生长到器件制作的完整生产线年建厂以来,其半导体激光二极管及大功率激光器的产销量持续稳居国内第一。为推进课题进展,浪潮华光组建精英团队,加速科研攻关。公司成立了由总经理、国务院特殊津贴专家郑铁民研究员担任组长的项目小组,调动公司所有资源,完善了科研团队建设,从半导体激光器的材料生长、管芯工艺制作、器件封装等整个制造工艺链均配备了专业人才。组建了以长江学者徐现刚教授为学术带头人的研发团队,有研究员、高级工程师和博士、硕士等80余人。强大的科研团队借助公司已有的省级半导体激光器技术实验室、山东省半导体发光材料与器件工程实验室等科研平台,开展了技术攻关。 期间,在徐现刚教授的引领下,技术总监夏伟博士组织浪潮华光的精英团队成员,集思广益,刻苦钻研,成功实现了三大关键技术突破:一是TM偏振808nm半导体激光器外延材料与芯片研制。围绕实现项目要求的特定偏振激光输出,项目组从理论设计激光器的材料结构开始,进行了系统的研究,有效采用了MOCVD技术制备这种特殊材料,加快了科研步伐。目前,该技术世界上只有为数不多的几个大公司掌握。通过5个月的努力,浪潮华光成功掌握了自主生长技术,满足了项目需求。二是635nm激光器外延材料与芯片研制。为了增加红光分量的亮度,激光显示项目在红光波段选择了波长最短的635nm半导体激光器。浪潮华光在650nm半导体激光器方面积累了丰富经验,形成了稳定的650nm半导体激光器产品,占据市场70%的份额。虽然635nm激光器相比650nm红光激光器只有十五纳米的波长差异,但是其带来的技术难题却成几何级数增长。目前,只有日本的几家公司掌握了635nm激光器的制作技术。浪潮华光研发团队经过上千次的试验,最终突破了635nm红光激光器材料的生长技术难点,实现了红光激光器的大功率输出和长期可靠工作。三是模组封装及集成技术。浪潮华光的封装技术人员克服时间紧任务重的困难,与863项目的用户积极配合,实现了高精度多管芯封装技术、新型热沉制作技术、微透镜整形技术等多项自主创新技术,完成了项目要求的模组封装和整形。 目前,针对所承担的“863”项目,浪潮华光已成功研制出满足激光显示工程化要求的808nm、635nm高可靠性、低成本半导体激光器件,并已经初步实现了规模化的生产。从目前的科研和生产进度上看,浪潮华光有望提前全面完成项目预定任务,并能实现批量提供民用激光显示用激光光源的目标,将会大大降低激光器的价格,并带动国内激光器应用市场的发展和更加广泛的应用,实现了“替代进口产品、提高我国半导体激光器的地位、实现激光器显示用核心元器件国产化”的梦想,让该公司产品在国际激光显示产业中独占鳌头。
滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。
p 由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。 /p p 高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。 /p p 该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。 /p
11月17日,第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)终于在深圳国际会展中心(宝安新馆)圆满闭幕啦!LEAP Expo下辖慕尼黑华南电子展、慕尼黑华南电子生产设备展、华南先进激光及加工应用技术展览会及同期举办的中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳),华南电路板国际贸易采购博览会共同亮相第二十四届高交会。五展联动,且依托高交会平台,为智能制造相关业界同仁们奉献了一场能够饱览技术、了解趋势、沟通商贸、促进合作的秋季盛宴。2022 LEAP Expo大数据80000平米展示面积1100家参展商及品牌LEAP Expo通过十多个特色展区,联合产业优质企业,集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,同时配套智慧汽车、ADAS与自动驾驶、电动车驱动与充电技术、5G+工业互联网、第三代功率半导体、嵌入式系统、物联网、医疗电子、碳中和碳达峰、点胶与胶粘剂技术、电子制造技术、半导体领域扇出型封装、3C柔性制造、数字化工厂、汽车线束加工、激光技术聚焦行业应用、机器视觉与5G、人工智能、边缘计算、PCB企业供应链管理、安全生产等热门话题举办不同主题的行业论坛与活动,为专业观众带来丰富参展体验。慕尼黑展览(上海)有限公司首席运营官路王斌先生表示:“华南地区是备受关注的制造业核心地。激光技术相比许多传统制造技术更具成本效益。华南制造业转型升级对激光技术的市场需求量猛增,其中3C和电子行业就是一个非常大的应用场景。华南激光展不仅是展示激光技术、设备和器件,更是联动激光产业链的供应端和应用终端,提供更多创新前沿的激光解决方案,希望能促进垂直市场的合作、产生实际效能。”整合行业资源,推动智能制造开启新篇章激光技术以其优异性、高效率等特性正不断帮助汽车、电子、医疗、新能源、PCB、通信、家电、照明等行业实现制造工艺升级。经过多年的迅猛发展,我国已经成为激光产业的大国,激光产品国产化实现了,为国内智能制造发展提供了强大武器。高交会作为中国高新技术领域对外开放的重要窗口,集中展示新一代信息技术、生物技术、新能源、新材料、高端装备、绿色环保、航空航天等战略性新兴产业科研成果及先进技术。今年高交会携手华南先进激光及加工应用技术展览会,链接多方行业资源,为满足激光产业链企业的成果展示、产品发布、接洽贸易等需求提供了更高端的商贸平台,也为广大华南地区的激光技术潜在用户寻找个性化的产品及行业解决方案拓宽了通道。展会现场各知名品牌展商大放异彩,充分呈现激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的创新发展。大族激光每年都有参与华南激光展,而今年,大族激光带来的是国内领先完全拥有自主知识产权一款半导体封测领域明星产品——“悍狮”系列高速高精度全自动半导体焊线机。现场引来一片驻足咨询。集团品牌推广运营部部门负责人叶创波说到,“这款产品适合于目前主流封装形式,包括分立器件和集成电路封装,填补了国内空白,其技术与工艺水平接近或达到目前国际先进水平。”此外,他还表示:“大族激光在去年做了一次大的组织调整,分拆出100+个产品中心,相当于服务于100+个行业客户。公司加大了推广力度,期望着能在行业重点展会亮相,华南激光展也是我们期待的一大盛会。从现场的情况来看,无论是人流和展商质量都超预期。”可应用于微电子/半导体、集成电路及医疗/生物技术的复合式二维平台是隐冠半导体推出的二维机械导轨+空气轴承复合式运动平台。公司总经理吴立伟向前来咨询的买家介绍道:“该平台其采用模块化、正交性等设计理念,包含YG的MZT模块和复合式XY台模块。MZT模块集成在复合式XY台模块之上,能实现X、Y、Z和T轴4自由度的高精度、高刚度直线和旋转运动。MZT模块的垂向采用了独特的大行程磁浮重力补偿技术,降低了垂向电机的载荷,很大程度地提高了垂向运动性能和寿命。同时,复合式XY台模块采用驱动质心匹配、柔性龙门以及轻量化设计技术,具有降低对对高精度机械导轨的偏质心冲击,提高运动系统的可靠性和寿命的能力,并具有对Y1及Y2电机轻微平移不同步的修正功能。”上海隐冠半导体技术有限公司总经理吴立伟:“我们很感谢主办方周密的组织。隐冠半导体这次带来了很多先进技术产品,希望通过华南激光展这个平台服务于华南地区的客户,对展会的期望很大,收获也颇丰。”提到3D打印,不得不推出创鑫激光的MFSC 300W 3D 打印单模连续光纤激光器,产品基于模块化设计,拥有极佳的光束质量和极高的稳定性。创鑫激光技术主管钟相进表示,“这款激光器激光功率连续可调,采用光纤配 QBH/QCS头输出,可配合激光加工头与机器人、机床等进行系统集成,已经在3D 打印、精细切割、薄板焊接、3C 焊接等有广泛应用。”深圳市创鑫激光股份有限公司技术主管钟相进:“参加本次展会,不仅和同行、老客户进行了交流,也结实了很多新客户。华南激光展在这个行业以及整个华南地区还是有比较大的影响力的,对创鑫激光的宣传以及未来的发展都有积极的正向引导作用。”武汉锐科光纤激光技术股份有限公司副部长夏早兵介绍到:“我们的新一代光束可调激光器RFL-ABP可应用于新能源汽车等领域,填补了国产光纤激光器光束模式可调技术的空白。运用锐科研发的定制化光纤合束器,可以实现高斯光斑、环形光斑、混合光斑等不同模式输出,根据加工要求,任意切换。同时,纤芯、环芯功率可独立调节,实现纤芯/环芯任意功率比。”武汉锐科光纤激光技术股份有限公司副部长夏早兵:“因为近一两年的疫情影响,展会还是受到比较大的阻碍,今年也是经过了千辛万苦参加了华南激光展。我们希望借这个平台,整合上下游,了解更多的客户需求,让行业内的人能把激光应用得更好;同时参展也可以让我们了解到应用在新能源焊接切割方面的一些新产品。“飞博激光销售总监冷学鹏向观众热情地推荐了手持焊专用光纤激光器,“这款激光器是针对焊接市场研发设计的激光器。电光转换效率大于40%,节能稳定。可搭配10米输出光缆,操作更加灵活。配备的输出头轻而短,且小巧,节省更多集成空间。速度快效率高,焊接能力强。无耗材,焊缝光滑细腻,不易变形。操作灵活、简便,可满足多角度、多位置焊接。”上海飞博激光科技有限公司销售总监冷学鹏:“这次飞博激光带了很多款新产品包括升级迭代的产品,在和客户朋友们沟通交流的时候大家都非常感兴趣。我们觉得这次参展机会非常好,华南激光展为我们逐渐打开更大的市场领域,比如精密加工、精密焊接,甚至是医疗、科研等新兴领域。”顺应制造升级需求,打造激光特色展区近年来,激光核心零件、激光器、激光设备等都国产化方面频频传来傲人进展,国内制造业已进入高质量发展阶段。为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,华南激光展精心打造“激光创新技术及智能检测展示区”,涵盖激光创新技术、工业智能检测技术及核心部件,现场为来自消费电子、半导体、新能源、智能检测等终端应用买家讲解或演示光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等、应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等技术方案。光惠激光此次特地带来新一代智能风冷激光手持焊搭YLPS- Weld- 1500- A。公司市场专员赵振程自豪地表示:“这款产品配光惠自主研发的“ 不怕热”的焊接头,独特的非球面光学技术,重量比其他同类型焊接头减轻35% ,一体化的设计可以有更好的送丝效果, 焊缝完美无变形,机器可以在-10-50 ℃正常运行,操作简单内置55组应用工艺数据包,可以根据应用场景智能化选用,彻底解决工艺摸索问题,而且是全铝机身,重量仅有45kg,较第一代重量减轻30%,提升了征集移动的可靠性。另外还配备了多重安全保障,除急停按钮以外,单独安全的电路设计彻底解决了漏电的可能性。”他还表示:“本次参展总体体验感觉比较良好,对展位人流量比较满意,有很多客户也了解过我们的产品。同时主办方在我们参展期间,对我们也给予了较多的支持和帮助。”助力初创企业,技术人才两不误疫情常态化给不少初创企业造成了冲击,面临着运营及人才缺乏的困境,而激光初创企业往往缺少的不是技术,而是发现他们的“伯乐”。今年,11家初创企业看准了华南激光展的资源整合优势,齐聚展会“Start-ups初创专区”,通过华南激光展不仅借机展示了与汽车、微电子、医疗等终端应用领域适配的涵盖光学元件、光学模组、光学系统及仪器、激光腔体、激光器、激光打标机、激光切割机、激光焊接机、激光打标机、激光清洗机等种类丰富的产品,更是推出了人才招募计划,吸纳了不少目光。秉持着光学科技创造美好生活的使命,成立于2018年的麓邦,在液晶微纳技术的研发与应用领域已走在全球前列,且成为国内唯一实现量产的企业。这次展会现场,也不时有观众前来咨询他们的液晶维纳技术。据麓邦透露,该技术在航空航天、激光雷达、激光加工、VR/AR、医美医疗等领域都有着广阔的应用前景。谈到这次参展,麓邦销售经理周芬京表示:“此次展会,不乏有各地过来的光学专业观众过来指导交流,对我们麓邦的产品非常赞赏。希望下一届展会能办得更好,引导更多行业相关的专业观众,帮助麓邦把产品和服务推向更广的领域。”浙江法拉第激光科技有限公司是依托北大-温州激光与光电子联合研发中心产-学-研模式孵化的国家高新技术企业。法拉第总工程师刘珍峰称:“我们的窄线宽法拉第激光器产业化后,铯钟的频率稳定性指标有了量级的提高,为铯钟的国产化奠定了重要基础。”供需配对,一键触达核心资源同时,除了展台交流外,华南激光展现场专设商贸配对区,联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域专业人士组成的近百个买家团莅临参观,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈,旨在促进产业上下游的无缝对接、满足终端应用需求、帮助展商拓展商机、获取意向订单、提高参展效率。电子终端应用代表华为:“我是来自3C行业的,主要是来看一下3C的检测技术,包括激光类、射线类。看到有中图仪器的检测类的产品,以及大恒激光,锐科等。总体来说比较满意,展会内容也很广,收获很大。”智睿国际:“慕尼黑主办的展会一直都有参加,人气很旺。我们是做智能家居的,类似于通过语音控制小米家电。参加展会主要是想观摩学习一下,同时我们公司也会使用大族激光的激光打标。疫情下能举办展会实属不易,希望华南激光展能越办越好。”深挖激光技术热点,同期论坛输送工艺养分展会同期举办华南国际光子智能制造及应用技术大会,分设《激光工艺赋能消费电子创新制造研讨会》和《激光技术助力半导体制造,合力打造中国芯》两个主题,邀请激光、光电、高端装备制造领域的企业核心代表、技术学者、院校专家等汇聚一堂,与观众分享不同应用场景下的技术难点等,探讨线C产品制造中的应用、激光加工设备用于手机盖板精细化切割的工艺难点、超快激光加工OLED柔性材料、柔性显示面板生产中的激光切割解决方案、激光微纳制造技术在消费电子领域的创新应用、紫外激光在晶圆划片中的应用、超快激光用于晶圆的精密切割、准分子激光在半导体光刻及退火中的应用、激光精密打标用于半导体芯片及器件的标识、激光技术在钻通孔中的应用、激光技术用于半导体晶圆清洗、不同激光器在半导体芯片及材料方面的加工工艺革新等。在此,我们要感谢所有支持华南激光展的展商、观众以及各合作方,你们的真诚付出与奉献成就华南激光展的收获满满,更是成就了展会新老朋友的相识与相聚。华南激光展始终致力于促进激光产业链上下游积极合作,为华南地区制造业升级献力、为国内智能制造发展添砖加瓦。希望展会的举办能为激光人增添信心,在外部客观因素冲击行业的影响下,积极应对挑战,坚定不移努力提升技术及核心竞争力,不断推陈出新,探索未来发展新格局。结束意味着新的开始相信四个月。